Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biomolecules ; 12(4)2022 03 23.
Article in English | MEDLINE | ID: covidwho-1847266

ABSTRACT

We conducted a case-control study in order to evaluate whether ABO gene polymorphisms were associated with a high risk of developing COVID-19 in a cohort of patients. Six ABO gene polymorphisms (rs651007 T/C, rs579459 T/C, rs495828 T/G, rs8176746 A/C, rs8176740 T/A, and rs512770 T/C) were determined using TaqMan genotyping assays in a group of 415 COVID-19 patients and 288 healthy controls. The distribution of rs651007 T/C, rs579459 T/C, rs495828 T/G, and rs8176746 A/C polymorphisms was similar in patients and healthy controls. Nonetheless, under co-dominant (OR = 1.89, pCCo-dominant = 6 × 10-6), recessive (OR = 1.98, pCRecessive = 1 × 10-4), and additive (OR = 1.36, pCAdditive = 3 × 10-3) models, the TT genotype of the rs8176740 T/A polymorphism increased the risk of developing COVID-19. In the same way, under co-dominant, recessive, and additive models, the TT genotype of the rs512770 T/C polymorphism was associated with a high risk of developing COVID-19 (OR = 1.87, pCCo-dominant = 2 × 10-3; OR = 1.87, pCRecessive = 5 × 10-4; and OR = 1.35, pCAdditive = 4 × 10-3, respectively). On the other hand, the GTC and GAT haplotypes were associated with a high risk of COVID-19 (OR = 5.45, pC = 1 × 10-6 and OR = 6.33, pC = 1 × 10-6, respectively). In addition, the rs8176740 TT genotype was associated with high-platelet plasma concentrations in patients with COVID-19. Our data suggested that the ABO rs512770 T/C and rs8176740 T/A polymorphisms increased the risk of developing COVID-19 and the plasma concentration of platelets.


Subject(s)
ABO Blood-Group System , COVID-19 , Galactosyltransferases , Genetic Predisposition to Disease , ABO Blood-Group System/genetics , ABO Blood-Group System/metabolism , Blood Platelets , COVID-19/genetics , Case-Control Studies , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Humans , Polymorphism, Single Nucleotide
2.
Hum Genet ; 140(6): 969-979, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1092066

ABSTRACT

SARS-CoV-2 is responsible for the coronavirus disease 2019 (COVID-19) and the current health crisis. Despite intensive research efforts, the genes and pathways that contribute to COVID-19 remain poorly understood. We, therefore, used an integrative genomics (IG) approach to identify candidate genes responsible for COVID-19 and its severity. We used Bayesian colocalization (COLOC) and summary-based Mendelian randomization to combine gene expression quantitative trait loci (eQTLs) from the Lung eQTL (n = 1,038) and eQTLGen (n = 31,784) studies with published COVID-19 genome-wide association study (GWAS) data from the COVID-19 Host Genetics Initiative. Additionally, we used COLOC to integrate plasma protein quantitative trait loci (pQTL) from the INTERVAL study (n = 3,301) with COVID-19 loci. Finally, we determined any causal associations between plasma proteins and COVID-19 using multi-variable two-sample Mendelian randomization (MR). The expression of 18 genes in lung and/or blood co-localized with COVID-19 loci. Of these, 12 genes were in suggestive loci (PGWAS < 5 × 10-05). LZTFL1, SLC6A20, ABO, IL10RB and IFNAR2 and OAS1 had been previously associated with a heightened risk of COVID-19 (PGWAS < 5 × 10-08). We identified a causal association between OAS1 and COVID-19 GWAS. Plasma ABO protein, which is associated with blood type in humans, demonstrated a significant causal relationship with COVID-19 in the MR analysis; increased plasma levels were associated with an increased risk of COVID-19 and, in particular, severe COVID-19. In summary, our study identified genes associated with COVID-19 that may be prioritized for future investigations. Importantly, this is the first study to demonstrate a causal association between plasma ABO protein and COVID-19.


Subject(s)
Blood Proteins/metabolism , COVID-19/epidemiology , Genetic Predisposition to Disease , Lung/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , SARS-CoV-2/isolation & purification , ABO Blood-Group System/metabolism , COVID-19/metabolism , COVID-19/virology , Cohort Studies , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Risk Factors
3.
Sci Rep ; 11(1): 3379, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1075252

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide as a pandemic throughout 2020. Since the virus uses angiotensin-converting enzyme 2 (ACE2) as a receptor for cellular entry, increment of ACE2 would lead to an increased risk of SARS-CoV-2 infection. At the same time, an association of the ABO blood group system with COVID-19 has also been highlighted: there is increasing evidence to suggest that non-O individuals are at higher risk of severe COVID-19 than O individuals. These findings imply that simultaneous suppression of ACE2 and ABO would be a promising approach for prevention or treatment of COVID-19. Notably, we have previously clarified that histone deacetylase inhibitors (HDACIs) are able to suppress ABO expression in vitro. Against this background, we further evaluated the effect of HDACIs on cultured epithelial cell lines, and found that HDACIs suppress both ACE2 and ABO expression simultaneously. Furthermore, the amount of ACE2 protein was shown to be decreased by one of the clinically-used HDACIs, panobinostat, which has been reported to reduce B-antigens on cell surfaces. On the basis of these findings, we conclude that panobinostat could have the potential to serve as a preventive drug against COVID-19.


Subject(s)
ABO Blood-Group System/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Panobinostat/pharmacology , Butyric Acid/pharmacology , COVID-19/prevention & control , Cell Line , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Serine Endopeptidases , COVID-19 Drug Treatment
4.
Infect Genet Evol ; 90: 104751, 2021 06.
Article in English | MEDLINE | ID: covidwho-1062516

ABSTRACT

COVID-19 is the currently evolving viral disease worldwide. It mainly targets the respiratory organs, tissues and causes illness. A plethora of studies has been performing to bring proper treatment and prevent people from the infection. Likewise, susceptibility to some infectious diseases has been associated with blood group phenotypes. The co-relationship of blood group with the occurrence of SARS-CoV-2 infection and death has been examined in numerous studies. This review explained the described studies regarding the correlation of blood group and the other essential factors with COVID-19.


Subject(s)
ABO Blood-Group System/genetics , COVID-19/epidemiology , COVID-19/etiology , Disease Susceptibility , Phenotype , SARS-CoV-2 , ABO Blood-Group System/chemistry , ABO Blood-Group System/immunology , ABO Blood-Group System/metabolism , Coronavirus/classification , Coronavirus/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Structure-Activity Relationship , Thromboplastin/metabolism , von Willebrand Factor/metabolism
5.
Nat Commun ; 11(1): 6397, 2020 12 16.
Article in English | MEDLINE | ID: covidwho-1023894

ABSTRACT

Understanding the genetic architecture of host proteins interacting with SARS-CoV-2 or mediating the maladaptive host response to COVID-19 can help to identify new or repurpose existing drugs targeting those proteins. We present a genetic discovery study of 179 such host proteins among 10,708 individuals using an aptamer-based technique. We identify 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links and evidence that putative viral interaction partners such as MARK3 affect immune response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).


Subject(s)
COVID-19/genetics , COVID-19/virology , Host-Pathogen Interactions/genetics , Proteins/genetics , SARS-CoV-2/physiology , ABO Blood-Group System/metabolism , Aptamers, Peptide/blood , Aptamers, Peptide/metabolism , Blood Coagulation , Drug Delivery Systems , Female , Gene Expression Regulation , Host-Derived Cellular Factors/metabolism , Humans , Internet , Male , Middle Aged , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL